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THE REALIZATION OF NAMBU — JONA-LASINIO TYPE MODEL
ON PHYSICAL FIELDS

A.N.Vall*, V.M.Leviant*, A.V Sinitskaya*

Method of dynamical mapping for the Heisenberg fields onto physical fields
in the four fermion interaction Hamiltonian (nonrelativistic variant of NJL
model) is used to calculate: energy of physical vacuum, one-particle excitation
energy spectrum, wave function and mass of the bound state of two excitations.

Peanuzauus moaesn Ham6y — Moua-Jlasunuo
HA (PU3HUYECKHX NOAAX

A.H.Bann, B.M.Jlesnaut, A.B.Cunuukas

MeTonom annammueckoro oTobpaxenmns reiseHbeprosckux noneit Ha dpu-
3UUECKHE NONY 1 TAMHALTOHHAHA C lleTblpe)((x)epMMOHHI>IM Bsaumoueﬁcmu—
€M BBIYMCNEHbE: IHEPrUS (PU3HUECKOTO BAKYYMA, SHEPrETUUECKUIA CTIEKTP OA-
HOYACTHMUYHBIX BO30Y KAEHMI1, BONHOBA (PYHKUMS ¥ MACCA CBA3AHHOIO COCTON-
HUS ABYX BO36YKAEHMIA.

The investigation of the bound-state problem in the frame of quantum
field theory may be done by using, at least, two methods. The first one is
based on the search for self-consistene solutions of Schwinger — Dyson
(SD) equation for the full propagator of interacting particles and Bete —
Solpiter (BS) equation for the vertex Green function (see [1 ] and references
there). Another one deals straightly with the state vectors [2,3].

The Nambu and Jona-Lasinio (NJL) model [4 | fits from any points of
view to study the possibility of producing the bound states. Though
originally it was solved by the Green function method, its resemblance to
the superconductive type models allows one to use both the first and the
second methods.

In the present paper we consider the most simple nonrelativistic variant
of NJL model, more closely related to the nonlinear Heisenberg theory [5],
to demonstrate the advantages of the second approach. We find the repre-
sentation for the Heisenberg fields via «physicals fields ( dynamical
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mapping [6 ) describing the collective degrees of freedom (excitations).
These excitations can form bound states, and thc momenta of the
excitations turn out to be strictly correlated between each other. The exact
expression for the wave function of the bound states is written out, but for
the encrgy (mass) of the bound states we obtain nonlinear integral equation,
the type of cquation for the cnergy gap. The spectrum of the one-particle
excitations and the encrgy of the ground states have been found as well. As
a conclusion we show briefly the correspondence of these two methods.

The physical states, by the definition, arc the states upon which a
Hamiltonian is diagonal in a weak sense:

(KIHIK') = (kI [ A*¢B* (q)B(Q)E(Q) 1K) + W,, )
where B(k)10) = 0, Ik) = B*(k)I0)and
[H, B* (k) 110) = E(k)10)

and E(K)- energy spectrum of physical particles.
Consider now the Hamiltonian of our model:

H=[d [zp;(x) (V) ¥ (x) + %x*(x) x(x)] , @

where «a is spin index running over 1,2,e(V) is energy spectrum of free
fermions, defined by the condition

(V) ¢ = g(k) ¥, 3)

and*

X0 = €, (W40, X7 (X) = e g (W ().

Let us formulate the problems we want to solve demonstrating the
efficicncy of the physical ficld representation.
* i) Connection of the Heisenberg ficlds ¢ with physical ones ¢, i.e.,
dynamical mapping y on ¢.
* i) Stability of vacuum and its encrgy.
¢ iii) Spectrum of one particlc physical state E(k).
* iv) Spectrum and wavc function of two-particlc state.
* v) Correspondence with the usual approach.
We will give the solutions of the outlined problems following the list.
i) In our case the dynamical mapping has the form:

Yol = g () + vge O e g (),

*s12 = — €21, Eaftay = Opy
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Vo (0) = ugr (x) + e e i), 4)

where u(z) + v(z) = 1, with ¢ _(x) defined as
1 oo
P (%) = Wf d*kg(k)e™ T E®Y k), (5)

{400, 45 @) =8 g5k — @), ©)

E(k) is unknown yet excitation spectrum of A;(k). The physical meaning of

8(K) is clear enough, it is one-particle wave function and it cannot be calcu-
lated in the frames of this model (free parameter).
ii) The vacuum is now defined with respect to the physical fields A:(k):

A,(k)10) = 0. D
Consider the action of the Hamiltonian (2) on this vacuum. We have:
H10) = const 10) + AH(2)10). 3
AH(2) being expressed in terms of the creation operators A:(k) has the
form
A ik x
AHQ2) = UoVolas J d3x¢;(x) ( 2v*) e’ ¢; x) =
K
— 3 +[_0 _ +[_0
—fde(k)eaﬁAa(z k)Aﬂ (2 +k), 9)
where
k k k
- T P | I
D(k)—uovog(k 2)g(k+2)(8(k 2)+2V)
1 [ k1 g(k) 12

1% (2n3

Thus, as it follows from (8), the nonexcited state 10) is not an eigenstate of
the Hamilonian (2), and the AH (2) term is the source of the nonstationarity
of 10). This term describes correlated fermion couple of excitations, moving
with the momentum k The physical meaning of the relation (8) is that it
points to the exnstence of energy exchange between the couple and the
system of fermions. In order to account this exchange one has to input the
term describing the couple into the initial Hamiltonian. So, in the relation
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(8) we transfer AH(2) to the left part, thus, redefining the Hamiltonian and
taking as a physical Hamiltonian the quantity Hp equal to

H, = :H — AH(2);, 10)

where the normal ordering is referred to the Heisenberg fields. If
AH(2) =: AH(2): + const, then

leO) = H10) — AH(2)10) + const|0),

HpIO) = WOIO), W, = const, + const, an
A
const, = 2 o~ (e(ko) tom T 2V'
4“3 v 2 —ia(x)_ponaia(x) _ 4V 22 (kz) A
const. = — o ——[d°xe e(V)e 47u0v0 + ik 12)

Here Vis space volume, and

) = Sk 1 gk) 12

13
[dk1g(k)12 49

Consequently, after substitution of the counterterm AH(2) into the Hamilto-
nian (2) the non-excited state 10) becomes stationary, with the energy W,
iii) It is easy to see from (1) that this redefinition of the Hamiltonian
does not change the one-particle excitation spectrum E(K), the value of
which is readily derived using eqgs. (1), (2), (4)—(6)
2
2| 2 2 Yo
E(k) = 1g(K)I1“{ uge(k) — vie(k — ky) — 4 7 . (149

iv) Let us now find how the Hamiltonian Hp acts on a state composed of

two excitations with momenta k and q
H AL ()AZ (@)10) = (W, + E(K) + E(@))4; (K) A5 (9)10) +

k i X
+2 5’(72)% [ & V¥ (5% (2)0). (15)

If the excitations do not interact with each other, the last term in the sum
(15) should vanish. Then, this two-particle excitation will be an eigenstate
of the Hamiltonian Hp with the energy being equal to the sum of both exci-
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tation energies. That is the case for two excitations with a total spin 1 (sym-
metrical over a §). Putting k = — q in equation (15) we have:

Hpﬁ(k)m) = (w + E(K) + E(—k))A(k)10) +

'f"‘)' [ Pl g@)1? A% (@)10),

AT (k) = eaﬂA;(k)A;(—k). (16)
Taking the wave packet A™:
+ _ 3 + +
=[d kG(K)e .54, (K)Ag (—K) an
and demanding for it to be an eigenstate of the Hamiltonian
HpA+IO)= (Wy +u)AT10) (18)

we come 1o the equation on the wave function G(k) and the energy of this
state u:

[ [G(k) (E(K) + E(=K) — ) + 7,1 g(K)! 2]2*(10 10)=0, (19
where

A 3 2
Vo = d qlg(q) “G(q). 20)
0= )3f £(9)! “G(q)
Hence follows the only solution for G(k):

vl 8k) 12

S E0 - B0 @b

G(k)

Substitution of this solution into the relation (20) leads to the equation
for u: | g(k)l‘

Bk
(27[)3 Ry ey g @
Let us rewrite (22) in the form
2
1= g ls®l 23
(2n k“+9

This equation determines 82 as a function of 1. We will seek solution of (23)
in the form of asymptotic series
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¢, ¢ 4
62=a0+al+—jl—+:l—§-+..., 24

kza ¢ C
2 2 _ 0 1 2
k“+4d —l(a+*’1 +A—2+A—3+...].

Using the series conversion formulae we can derive

L 1 1 b b )2
k2+62—a+be+ce2+...—“[l—“e+(z—a)e+m, @

where e =1/, b= a, + kz, ¢ = c,, ect. Substituting the series expansion

(25) into the equation (23), collecting the terms of the same power over A
and equating them to zero, we will obtain the chain of relations defining the
coefficients a,, a, ¢, ecl. Straightforward calculations give the following

result:
= (kD) g=-M
ao——(k),a———F, 2
Y ) Ok et ) @0
! v fdk1 gk)12 v
from which we receive the asymptotic series for d%and 75
2 _qy_M,_V ¢
0% = —(k%) V'A w1t
——‘5—2+21so 2E(0) = -'—“21+i o L Q@n

The magnitude of M is determined from the vacuum energy W,
minimization condition over the rotation parameters u,,, Vo and a(x).

From the relations (26) and (27) it is easy to see that the non-
perturbative and singular with respect to the coupling constant A contribu-
tions into the energy are defined by the dispersion o over momentum distri-
bution 1g(k)!2 inside the excitation.

In order to show the correspondence with the Green functions’ method
we will just write out the Shwinger — Dyson and Bete — Solpiter type equa-
tions. The word «types means that we deal with the physical fields, and to
pass to the standard SD and BS equations one has to substitute the Hei-
senberg fields instead of the physical ones using the inverse dynamical
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mapping. It is not necessary for our aim to do that, so we leave it for reader

to do.
The Green functions for the physical fields ¢ are, by the definition, the

vacuum expectation values of the T products of them. For the total two point
Green function we have:

G 1g(x, 10) = (01 T(¢a(x) ¢;(0)) 10), (28)

here we have put the second argument to zero. Its manifest form can be
calculated directly, using (5), from which. it is easy to find the equation:

0 . P, oy 4
(5‘; + IE(V)) Gaﬂ(x, t0) = 6aﬂA( )(x’ 1. (29)

The equation for the vertex Green function follows from the Heisenberg
€quation on ¢ _(x) using €q.(29):

E(V)G fy(x,5:0) = (0! T( [¢a(x,t),H] ¢ (0)1 0)) . (30

As has been said above, the usual SD and BS equations follow from (29) and
(30) under the transition ¢ - y.

For the conclusion we would like to point to that the physical fields rep-
resentation method can be generalized for the relativistic case, and next
paper will be devoted to this generalization.
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